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Abstract The paper presents a comprehensive review of the know-how for developing the systems

consolidity theory for modeling, analysis, optimization and design in fully fuzzy environment. The

solving of systems consolidity theory included its development for handling new functions of differ-

ent dimensionalities, fuzzy analytic geometry, fuzzy vector analysis, functions of fuzzy complex

variables, ordinary differentiation of fuzzy functions and partial fraction of fuzzy polynomials.

On the other hand, the handling of fuzzy matrices covered determinants of fuzzy matrices, the

eigenvalues of fuzzy matrices, and solving least-squares fuzzy linear equations. The approach dem-

onstrated to be also applicable in a systematic way in handling new fuzzy probabilistic and statis-

tical problems. This included extending the conventional probabilistic and statistical analysis for

handling fuzzy random data. Application also covered the consolidity of fuzzy optimization prob-

lems. Various numerical examples solved have demonstrated that the new consolidity concept is

highly effective in solving in a compact form the propagation of fuzziness in linear, nonlinear, mul-

tivariable and dynamic problems with different types of complexities. Finally, it is demonstrated

that the implementation of the suggested fuzzy mathematics can be easily embedded within normal

mathematics through building special fuzzy functions library inside the computational Matlab

Toolbox or using other similar software languages.
� 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Consolidity [1–6] (which is a new introduced noun which
means the act or quality of consolidation) is one of the inherent

properties of the universe typically operating in fully fuzzy

environment1). It mainly measures the systems output reactions
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versus combined input/system parameters’ reactions when
subjected to varying fuzzy environments or events (the system

consolidity concept could be regarded as a general internal

property of systems that can also be defined also far from
fuzzy logic). System consolidity has been expressed by the
consolidity index FO/(I+S) defined by the ratio ŒFO/F(I+S)Œ
where FO denotes the system output factor (overall reaction)
and F(I+S) designates the combined input and system parame-
ters factor (overall action) [1–3]. The system is defined to be

consolidated if FO/(I+S) < 1 denoted by ‘‘Class C’’, neutrally
consolidated if FO/(I+S) � 1 designated by ‘‘Class N’’ and
unconsolidated if FO/(I+S) > 1 referred to as ‘‘Class U’’. A
forth case is the mixed consolidated class denoted as ‘‘Class

M’’ combining the feature of all the three classes.
Consolidity plays role in the parameters changes of all sys-

tems when subjected to events or varying environments ‘‘on

and above’’ their normal operations or original set points2

[5,6]. Its creation was based on magnificent physical laws that
enables its consolidity regardless of all the ongoing changes

and fuzzy occurrences that continuously take place. It is also
an inherent property in most living species. For example for
human beings, their built-in self healing mechanisms constitute

one form of their surviving consolidity. Such consolidity, how-
ever, changes in their scale level from one human to another.

The applications of the Systems Consolidity Theory are ver-
satile and open for both natural and man-made systems. Such

new measure of the systems will open endless areas of research
in many interdisciplinary and multidisciplinary subjects. Only
very tiny parts of the applications are handled by the systems’

consolidity theory till now, and the area is completely open for
further development and work. Another important application
is to incorporate the consolidity index within the change

pathway change of real systems when subjected to varying
environments, events or activities [5,6].

The success of the applications of systems’ consolidity

theory to some preliminary examples have led to the impor-
tance of further development of the new theory and conduct-
ing wide methodological experimentation to many other case
studies in various disciplines. Examples of these successful

applications are the HIV/AIDS Epidemic model; the infectious
diseases spread model, the Prey–Predator Population model,
the Arm Race model, the drug concentration model, etc. [1].

Nevertheless, any further extension or implementation is
strongly tied to having a sound systematic know-how to be
used as the tool to handle various classes of problems, includ-

ing mathematical functions, matrices, probability and statistics
analysis in fully fuzzy environment.

It is, therefore, the target of this paper is to present in a
systematic way the know-how for developing the system’s con-

solidity supported with numerical examples and necessary
explanations. Such implementation will shed light toward the
introduction of a new generation of future superior systems

that combine excellent functionalities and strong consolidity.
2 Consolidity index is an important factor in scaling system param-

eter changes when subjected to events or varying environment. For

instance, for all coming events at say event state l which are ‘‘on and

above’’ the system normal situation or stand will lead to consecutive

changes of parameters. Such changes follow the general relationship at

any event step l as: D Parameter change (l) = Function[consolidity

(l), varying environment or event (l)] [6]. Two important common

cases in real life of such formulation are the linear(or linearized) and

the exponential relationship.
Similar approaches can also be devised for building sym-
bolic-based libraries to cover wider classes of linear, nonlinear,
multivariable and dynamic problems with different types of

complexities. This is beside the systematic implementation of
the above concept to many fuzzy applications such as
functions of different dimensionalities and types, analytic

geometry, vector analysis, formulas derivatives ad integrals,
matrix operations, and functions of fuzzy matrices; thus, form-
ing the basic core for the development of a generalized fuzzy

mathematics necessary for performing various consolidity
analyses, as elucidated in Fig. 1.

In Fig. 1, each branch topic will be handled separately, and
the suggested fuzzy algebra for consolidity analysis will be

applied to representative examples and case studies to form
the corresponding element of the generalized fuzzy mathemat-
ics. The solution sought will be through neat mathematical

closed form solutions far from the previously reported Taylor’s
series expansion for nonlinear functions representation.

2. Basics of the system consolidity

2.1. Basic definition of system consolidity

Systems can be classified according to consolidity into three
categories as follows:3 see Fig. 2, [1]:

(i) Consolidated systems or well connected, under hold,
under grasp, well linked, robust or well joined systems.

(ii) Neutrally consolidated systems.
(iii) Unconsolidated systems or weakly connected, separated,

non-robust or isolated systems.

The analysis will be based on the Arithmetic fuzzy
logic-based representation introduced in [5–10]. This Repre-
sentation is based on expressing each parameter X by two com-

ponents: Xo the deterministic equivalence, and Xf the fuzzy
equivalence representing a small uncertainty or value tolerance
in the parameter X. The term Xf is modeled by the formula:

Xf = fr‘x Xo where fr is the relative unit fuzziness (usually a
certain small percentage; this means that the effective values
of the fuzzy component are less than the main original deter-
ministic problem), and ‘x is the corresponding fuzzy level.

For the sake of simplicity fr is omitted in the representation
and the parameter X is expressed by the following pair
X= (Xo,‘x). The fuzzy operation based on the Arithmetic

fuzzy logic-based representation technique is summarized in
Table 1. It can be observed from Table 1 that the operations
(+ and �), also (Æ and /) are similar in the Arithmetic fuzzy

logic-based representation approach, which is not the case
for the Conventional Fuzzy Theory [10].

It was shown that the suggested approach is identical to

that of the Conventional Fuzzy Theory for addition and gives
weighted average fuzziness results for the subtraction opera-
tions. Moreover, it yields similar results of multiplication
and division operations after ignoring the second order relative

variations terms. Proof of this analogy can be found in refer-
ence [10].
3 The System Consolidity concept could be regarded as a general

internal property of systems that can also be defined far from fuzzy

logic such as by using rough sets.



• One dimensional fuzzy functions
   -  trigonometric fuzzy functions
   -  hyperbolic fuzzy functions
   -  exponential fuzzy functions
   -  other fuzzy functions 
•  Multiple dimensional fuzzy functions
• Fuzzy analytic geometry formulas
• Fuzzy vector analysis formulas
• Function of fuzzy complex variables
• Fuzzy formulas derivatives
• Partial fraction of fuzzy polynomials
• Fuzzy formulas integrals

Generalized 
fuzzy 

mathematics

1. Fuzzy 
functions and 

formulas

2. Fuzzy 
matrices

3. Fuzzy 
probability 

and statistics 

• Addition of fuzzy matrices
• Scalar multiplication of fuzzy matrices
• Products of fuzzy matrices
• Determinant of fuzzy matrices
• Derivatives of fuzzy matrices 

determinants
• Inversion of fuzzy matrices
• Eigenvalues of fuzzy matrices
• Solving least-squares fuzzy linear 

equations
• Fuzzy Jacobian matrices
• Functions of fuzzy matrices

• Fuzzy probabilistic functions
- continuous
- discrete 

• Fuzzy statistical functions
- Fuzzy means
- Fuzzy standard deviations
- Fuzzy variances
- Fuzzy covariance matrices
- Fuzzy correlating coefficients

• Moments of fuzzy random variables
• Multivariable fuzzy statistics
• Entropy of fuzzy random variables

Figure 1 Development graph of the generalized fuzzy mathematics necessary for consolidity calculations and analysis.

Systems (linear, nonlinear , 
multivariable , and dynamic )

UnconsolidatedNeutralConsolidated

• Well connected
• Well linked
• Robust
• Under hold
• Well joined

• Neutrally  consolidated • Weakly connected
• Weakly linked.
• Non-robust
• Separated
• Isolated

Degree of consolidity (FO/(I+S))

FO/(I+S) =1FO/(I+S) < 1 FO/(I+S) >1

Figure 2 Basic definition of systems’ consolidity.
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A system operating at a certain stable original state in fully
fuzzy environment is said to be consolidated if its overall out-
put fuzziness is suppressed corresponding to their combined

input and parameters fuzziness effect, and vice versa for uncon-
solidated systems. Neutrally consolidated systems correspond
to marginal or balanced reaction of output fuzziness.
2.2. The system consolidity index

The system consolidity index is developed in this section. This
index will measure the system overall output fuzziness
behavior versus the combined input and system parameters
variations. It describes the degree of how the systems react



Table 1 Summary of basic Arithmetic fuzzy logic-based

representation algebra [7–9].

Name of

operation

Symbolic

representation

of operation

Resulting values and fuzzy levels

from operation

Addition X+ Y Zo = Xo + Yo, and ‘z ¼ ‘xXoþ‘yYo

XoþYo

Subtraction X � Y Zo = Xo � Yo, and ‘z ¼ ‘xXo�‘yYo

Xo�Yo

Multiplication X Æ Y X Æ Y= (XoYo, ‘x + ‘y)

Division X/Y X/Y= (Xo/Yo, ‘x � ‘y)
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against input and system variation actions. Let us assume a
general system operating in fully fuzzy environment, having

the following elements:
Input parameters:

I ¼ ðVIi ; ‘IiÞ ð1Þ

such that VIi ; i ¼ 1; 2; . . . ;m describe the deterministic value of
input component Ii, and ‘Ii indicates its corresponding fuzzy

level.
System parameters:

S ¼ ðVSj ; ‘SjÞ ð2Þ

such that VSj ; j ¼ 1; 2; . . . ; n denote the deterministic value of
system parameter Sj, and ‘Sj denotes its corresponding fuzzy
level.

Output parameters:

O ¼ ðVOi
; ‘Oi
Þ ð3Þ

such that VOi
; i ¼ 1; 2; . . . ; k designate the deterministic value

of output component Oi, and ‘Oi
designates its corresponding

fuzzy level.
We will apply in this investigation, the weighted (or overall)

fuzzy levels, first for the combined input and system parame-
ters, and second for output parameters. As the relation
between combined input and system with output is close to
(or of the like type) of the multiplicative relations, the multipli-

cation fuzziness property of Table 1 is applied for combining
the fuzziness of input and system parameters.
Table 2 Examples of derived consolidity indices for standard fuzzy

Ser. Original function Taylor’s series expansion Calcu

1 y = sinx y ¼ x� x3

3! þ x5

5! þ � � � ‘y = ‘

2 y = cosx y ¼ 1� x2

2! þ x4

4! � x6

6! þ � � � ‘y = �

3 y = sinhx y ¼ xþ x3

3! þ x5

5! þ x7

7! þ � � � ‘y = ‘

4 y = coshx y ¼ 1þ x2

2! þ x4

4! þ x6

6! þ � � � ‘y = ‘

5 y = tanh�1x y ¼ xþ x3

3 þ x5

5 þ x7

7 þ � � � ‘y ¼ ‘

6 y = ex y ¼ 1þ xþ x2

2! þ x3

3! þ �� ‘y = ‘

7 y = ex sinx y ¼ xþ x2 þ 2x3

3 � x5

30� x6

90þ � � � ‘y = ‘

8 y = excosx y ¼ 1þ x� x3

3 � x4

6 þ � � � ‘y = ‘

9 y = etan x y ¼ 1þ xþ x2

2 þ x3

2 þ 3
8 x

4 þ � � � ‘y = ‘

10 y = lnx y ¼ 2: x�1
xþ1

� �
þ 2

3
x�1
xþ1

� �3
þ 2

5
x�1
xþ1

� �5
þ � � � ‘y = ‘

11 y = ax = ex lna y ¼ 1þ x � ln aþ ðx�ln aÞ
2

2! þ ðx�ln aÞ
3

3! þ �� ‘y = ‘
For the combined input and system parameters, we have
for the weighted fuzzy level to be denoted as the combined
Input and System Fuzziness Factor FI+S, given as:

F1þS ¼
Pm

i¼1VIi � ‘IiPm
i¼1VIi

þ
Pn

j¼1VSj � ‘SjPn
j¼1VSj

ð4Þ

Similarly, for the Output Fuzziness Factor FO, we have

FO ¼
Pk

i¼1VOi
� ‘OiPk

i¼1VOi

ð5Þ

Let the positive ratio ŒFO/FI+SŒ defines the system consolid-

ity index, to be denoted as FO/(I+S). Based on FO/(I+S) the sys-
tem consolidity state can then be classified as [1–4]:

(i) Consolidated if FO/(I+S) < 1, to be referred to as

‘‘Class C’’.
(ii) Neutrally consolidated if FO/(I+S) � 1, to be denoted

by ‘‘Class N’’.

(iii) Unconsolidated if FO/(I+S) > 1, to be referred to as
‘‘Class U’’.

For cases where the system consolidity indices lie at both
consolidated and unconsolidated parts, the system consolidity
will be designated as a mixed class or ‘‘Class M’’.

It must be pointed out that the same concept of consolidity
index can be also applied in a linguistic rather than numeric
type for descriptive systems that are not expressible in mathe-
matical forms. This is an important aspect that can be consid-

ered in future research work.
For mixed consolidated/unconsolidated systems, we could

face two special types of systems, namely:

(i) Quasi-Consolidated Systems ‘‘Class eC ’’: These are mixed
systems which are inclined more toward consolidation

such as the center of gravity (Averaged value) has
FO/(I+S) 1.

(ii) Quasi-Unconsolidated Systems ‘‘Class eU ’’: These are

mixed systems which are inclined more toward un-con-
solidation such as the center of gravity (Averaged value)
has FO/(I+S)� 1.
mathematical functions at the original set-point x0.

lated compact form of fuzzy level Consolidity index (symbolic form)

x Æ x0 Æ cosx0/sinx0 Œx0 cosx0/sinx0Œ

‘x Æ x0 Æ sinx0/cosx0 Œx0 sinx0/cosx0Œ

x Æ x0 Æ coshx0/sinhx0 Œx0 coshx0/sinhx0Œ

x Æ x0 Æ sinhx0/coshx0 Œx0 sinhx0/coshx0Œ

x � x0 � 1� x20
� ��1

=tanh�1x0 x0 � 1� x20
� ��1

=tanh�1x0

��� ���
x Æ x0 Œx0Œ

x Æ x0 Æ (1 + cosx0/sinx0) Œx0 (1 + cosx0/sinx0)Œ

x Æ x0 Æ (1 + sinx0/cos x0) Œx0(1 + sinx0/cosx0)Œ

x Æ x0 Æ (1 � tan2x0) jx0 � ð1� tan2 x0Þj

x/lnx0 Œ1/lnx0Œ

xÆx0Ælna Œx0ÆlnaŒ



Table 4 Consolidity results of selected three dimensional

fuzzy functions.

Aspect x y z u(x, y, z) v(x, y, z) w(x, y, z)

Value 1 2 3 78 0.2673 1.0351

Fuzzy levels 5 3 4 2 �4 �1
4 2 5 1 �4 �2
2 3 4 3 �4 �1
2 �3 �3 �4 3 1

�4 �3 �6 6 5 2

�6 5 4 9 �4 3

4 �6 6 5 7 �3
7 1 4 7 8 �1
1 6 3 7 5 �1

Average calculated value of FO/(I+S) 1.7073 1.6443 0.4724

Overall consolidity class M M M
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We need therefore to develop soft computing-based algo-
rithms for determining the external boundary of the consolid-
ity signature, and its center of gravity. This step can be carried

out using two different approaches. The first is to examine an
exhaustive number of trials scanning a mesh of all possible
input and system fuzziness, and then trace the external bound-

ary or envelope of the results. A second approach is to build
intelligent searching algorithm that attempts to allocate and
follow up the external boundary of the consolidity signature
(zone).

For some situations, it is possible for some functions to
develop the compact mathematical form of the consolidity
index ŒFO/FI+SŒ. Examples of these functions are shown in

the next section.

3. System consolidity of fuzzy functions

3.1. One-dimensional fuzzy functions

In this section we will develop compact formulas for the sys-
tem consolidity index of selected well known fuzzy functions
such as the trigonometric, hyperbolic and exponential func-

tions. The analysis starts by expressing each function by its
equivalent of Taylor’s series expansion.

In general, for the fuzzy series expressed as [11,12]:

fðxÞ ¼
X1
i¼0

ai x
i ð6Þ

we have been using the Arithmetic fuzzy logic-based represen-
tation approach for the following corresponding fuzzy level:

‘ffðxÞg ¼
X1
i¼0

ai � xi
0 � i‘x

( ),X1
i¼0

ai � xi
0 ð7Þ

Applying formulas (6) and (7) to various selected function,
it is easy to reach after some straightforward derivations the
new compact form of their consolidity index as shown in

Table 2.
Some numerical results for the consolidity of the functions

provided in Table 2 is shown in Table 3 for some selected val-
ues of the fuzzy parameter x. The status of each consolidity

index is shown also in the table.
Table 3 Consolidity index results with status for some selected fuz

Function Consolidity index of y for different values of x

0.1 0.3 0.5

y= sinx 0.9967a 0.9698a 0.915

y= cosx 0.0100a 0.0928a 0.273

y= sinhx 1.0033 b 0.6492a 1.082

y= coshx 0.0100a 0.0874a 0.302

y= ex 0.1000a 0.3000a 0.500

y= ex sin x 1.0967 b 1.2698 b 1.415

y= ex cosx 0.1100a 0.3928a 0.773

y= etanx 0.0990a 0.2713a 0.350

y= lnx 0.4343a 0.8306a 1.442

y= ax 0.0693a 0.2079a 0.346

a Means consolidated (Class C).
b Means unconsolidated (Class U).
The results of the implementation of the consolidity theory
to some selected standard functions indicated that their

consolidity indices vary from consolidated to unconsolidated
forms according to the various setting points selected for these
functions.

It is remarked at this point that the derivation of the conso-
lidity index of the standard functions in compact form repre-
sents a real impetus for pushing the new theory and will help

in making its future implementation follows a neat and smooth
path.

3.2. Multi-dimensional fuzzy functions

Let us consider the three dimensional functions of the three
fuzzy variables x, y and z as:

uðx; y; xÞ ¼ x � y2 � z3 � 5 � x2 � y � z ð8Þ

vðx; y; zÞ ¼ ðx2 þ y2 þ z2Þ�1=2 ð9Þ

and

wðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ yþ z� 1

x2 þ y2 þ z2y� 1

s
ð10Þ
zy standard functions.

0.7 0.9 1.1

2a 0.8311a 0.7142a 0.5599a

2a 0.5896a 1.1341 b 1.2817 b

0 b 1.1582 b 1.2565 b 1.3741 b

2a 0.4231a 0.6447a 0.8805a

0a 0.7000a 0.9000a 1.1000 b

2 b 1.5311 b 1.6142 b 1.6599 b

2a 1.2896 b 2.0341 b 3.2612 b

8a 0.2034a 0.5292a 3.1463 b

7 b 2.8037 b 9.4912 b 10.4921 b

6a 0.4852a 0.6238a 0.7625a



y
),( 11 yx

),( 22 yx

),( 33 yx

x

Figure 3 Sketch of triangle with three fuzzy vertices.
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It must be observed that similarly the fuzzy level compact

form of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðx; y; zÞ

p
is approximately 1

2
� ‘ffðx; y; zÞg.

For some selected fuzzy scenarios of x, y and z in the posi-
tive scale, the corresponding fuzzy results of the above func-

tions are summarized in Table 4. All over implementation
procedure in this paper, the exact values of fuzzy levels are
preserved all over the calculations and are rounded to integer

values only at the final results. The results indicated that the
consolidity of the three dimensional functions are of all of
the mixed type, which is a combined consolidated and uncon-
solidated form.
3.3. Fuzzy analytic geometry

In this section, the fuzzy analytic geometry is handled by the

suggested generalized fuzzy mathematics through solving a
representable example [11].

Example: Area of triangle of fuzzy vertices

Consider the area of triangle with fuzzy matrices at the two
dimensional vertices at (x1, y1), (x2, y2) and (x3, y3). The area
can be expressed as, see Fig. 3:

Area ¼ � 1
2

x1 y1 1

x2 y2 1

x3 y3 1

�������
�������

A ¼ � 1
2
ðx1y2 þ y1x3 þ y3x2 � y2x3 � y1x2 � x1y3Þ

ð11Þ

where the sign is chosen so that the area is nonnegative. The
area is zero if the points all lie on one line.
Table 5 Consolidity results of the area of triangle with fuzzy

vertices.

Aspect x1 y1 x2 y2 x3 y3 A FO/(I+S)

Value 1 1 �2 �2 4 6 3 7.3333

Fuzzy levels 4 4 3 2 1 1 7 3.5556

3 �3 2 �5 3 �2 3 1.5000

2 4 2 4 5 3 �6 2.6667

1 1 2 1 2 2 5 4.0000

1 �3 2 4 3 1 �2 3.5556

�1 �3 3 4 3 2 �1 1.2308

5 4 2 3 2 1 2 7.3333

3 2 5 4 7 3 9 2.1010

4 1 3 6 7 2 �5 1.5802

Average calculated value of FO/(I+S) 3.0581

Overall consolidity class U
As a numerical example, we consider the various fuzzy sce-
narios of the vertices as shown in Table 5. The results reveal
that the area of the fuzzy triangle is of the unconsolidated type.

In general, there is no definition for the fuzziness of any com-
plex variable as a whole, but the fuzzy concept can be imple-
mented separately for both the real component and imaginary

componentof the complex variable.

3.4. Fuzzy vector analysis

The fuzzy vector analysis using the generalized fuzzy mathe-
matics will be demonstrated by solving several examples.

Example: Fuzzy volume of parallelepiped

The expression A Æ (B · C) is in absolute value equal to the
volume of a parallelepiped with sides A, B and C, as shown in
Fig. 4.

If A ¼ A1iþ A2jþ A3k; B ¼ B1iþ B2jþ B3k;

and C ¼ C1iþ C2jþ C3k then

A � ðB� CÞ ¼ A �
i j k

B1 B2 B3

C1 C2 C3

������
������

ð12Þ

Volume ¼ A1ðB2C3 � B3C2Þ þ A2ðB3C1 � B1C3Þ
þA3ðB1C2 � B2C1Þ

V ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3

������
������

ð13Þ

As a numerical example we will consider the volume of
parallelepiped with the sides shown in Table 6, and different

corresponding fuzzy levels. The results using the generalized
fuzzy mathematics are also shown in the same table. The
results indicate that the consolidity of the volume of the fuzzy

parallelepiped is of the quasi unconsolidated type. This is
originally a mixed type, but the center of gravity of the conso-
lidity zone is inclined more toward the unconsolidated side

(Quasi-Unconsolidated type).

3.5. Functions of fuzzy complex variables

In this section, the suggested generalized fuzzy mathematics is

extended to cover functions of fuzzy complex variables.
Example: Various fuzzy complex expressions
We will express each function of fuzzy variables x, y in the

form u(x, y) + i v(x, y), where u and v are real. The application
of the system consolidity theory for such complex expressions
will be seen to be also systematic, by considering the real part

and the imaginary part separately during the calculation
analysis.
A

C

B

h n

Figure 4 A sketch showing a general form of fuzzy

parallelepiped.



Table 6 Consolidity results of the volume of fuzzy parallelepiped.

Aspect A1 A2 A3 B1 B2 B3 C1 C2 C3 V FO/(I+S)

Value 3 1 �1 20 1 2 1 5 7 30

Fuzzy levels 7 1 5 4 3 1 4 2 1 �8 3.2804

4 4 3 3 4 2 3 2 5 �6 1.7453

2 3 2 1 3 1 1 2 1 �4 2.8000

1 2 �3 2 1 3 2 �1 1 �2 1.9175

�2 3 �5 1 3 �3 1 4 6 1 0.4156

�5 �4 4 �5 3 3 �2 3 5 2 1.9833

4 5 �3 2 2 5 �3 �3 3 �3 1.4539

2 5 5 1 6 2 4 1 6 �2 0.5783

3 1 2 6 6 4 1 1 2 �6 2.6444

Average value of FO/(I+S) 1.8687

Overall consolidity class eU

Table 8 Steps followed in calculating y0 and y00.

Step Function Corresponding fuzzy level

1 u= x2 � 3x+ 1 ‘u ¼ ðx2 � 2‘x � 3x � ‘xÞ=u
2 v= sinh(u) ‘v = ‘u Æ u Æ coshu/sinhu
3 w= cosh(u) ‘w = ‘u Æ u Æ sinhu/coshu
4 z= (2x � 3)2 ‘z = 2 Æ (2 Æ x Æ ‘x)/z
5 y00 = 2v + z Æ w ‘y0 ¼ ½2v � ‘v þ z � wð‘z þ ‘wÞ�=y00

Table 7 Consolidity results of various functions of fuzzy complex variables.

Aspect x y z3 1/(1 � z) ln(z)

u1 v1 u2 v2 u3 v3
Value 3 2 �9 46 �0.25 0.25 1.2825 0.5880

Fuzzy levels 3 2 1 8 7 5 2 �1
1 2 11 4 1 2 1 1

4 2 �4 11 10 6 3 �2
�2 �1 2 �5 �5 �3 �1 1

3 1 �7 8 8 5 2 �2
4 3 4 11 9 6 3 �1
1 1 3 3 2 2 1 0

2 4 14 7 3 3 2 1

Average value of FO/(I+S) 3.1293 3.2120 2.4116 1.6864 0.8384 0.5438

Overall consolidity class ~U U M M C M
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Case 1:

z3 ¼ ðxþ iyÞ3 ¼ x3 � 3xy2 þ ið3x2y� y3Þ ¼ u1 þ iv1 ð14Þ

where u1 and v1 are fuzzy variables.
Case 2:

1

1� z
¼ 1

1� ðxþ iyÞ ¼
1� xþ iy

ð1� xÞ2 þ y2

¼ ð1� xÞ
ð1� xÞ2 þ y2

þ i
y

ð1� xÞ2 þ y2
¼ u2 þ iv2 ð15Þ

Case 3:

lnðzÞ ¼ 1

2
lnðx2 þ y2Þ þ i tan�1ðy=xÞ ¼ u3 þ iv3 ð16Þ

The expressions for calculating the fuzzy levels in the

corresponding compact form of u3 and v3 can be illustrated
as Œy/xŒ 6 1:

‘u3 ¼
‘fx2 þ y2g
ln x2

0 þ y20ð Þ ð17Þ

and

‘v3 ¼
ð‘y � ‘xÞ � x0y0

x2
0 þ y20ð Þ � tan�1ðy0=x0Þ

ð18Þ

As a numerical example, we will consider various cases of
fuzziness of x and y as shown in Table 7. The results using
the generalized fuzzy mathematics are also shown in the same
table. These results indicate that the real part and the imagi-

nary part of the complex functions considered follow different
types of consolidity.

3.6. Ordinary differentiation of fuzzy functions

In this section, the generalized fuzzy mathematics is imple-
mented for handling problems of ordinary differentiation of
fuzzy functions.

Example: Miscellaneous fuzzy differentiation

Case1:
For x is a fuzzy variable, let

y ¼ coshðx2 � 3xþ 1Þ ð19Þ

then
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y0 ¼ @y

@x
¼ ð2x� 3Þ sinhðx2 � 3xþ 1Þ ð20Þ

and

y00 ¼ @2y

@x2
¼ 2 sinhðx2 � 3xþ 1Þ þ ð2x� 3Þ2 coshðx2 � 3xþ 1Þ

ð21Þ

In calculating the fuzzy level of (21), the following steps can

made as illustrated in Table 8.
Case 2:
Let us consider the formula

x2yþ y3 ¼ 2 ð22Þ

Differentiating (22) with respect to x, yields

y0 ¼ �2xy
x2 þ 3xy2

ð23Þ

Also we have

y00 ¼ dðy0Þ
dx
¼ �ðx

2 þ 3y2Þ � ð2xy0 þ 2yÞ � ð2xyÞ � ð2xþ 6yy0Þ
ðx2 þ 3y2Þ2

ð24Þ
Table 10 Consolidity results of the partial fraction numerical exam

Parameter a1 a2 a3 a4 b1
Value �3 9 �22 52 4

Fuzzy levels 5 3 4 6 4

3 2 3 4 1

1 2 1 2 2

1 �1 2 �1 �1
�1 2 �2 �3 �3
�2 4 4 3 1

7 4 �2 1 2

2 1 �2 1 1

4 5 5 6 5

Average calculated value of FO/(I+S)

Overall consolidity class

Table 9 Consolidity results of ordinary differentiation of fuzzy fun

Aspect Case 1

x y y0 y00

Value 0.6 1.0984 0.8178 2.6501

Fuzzy levels 5 2 9 �10
4 2 7 �8
3 �1 6 �6
2 1 4 �4
1 0 2 �2
�6 �3 �11 12

�7 �3 �13 �14
8 4 15 �16
9 4 17 �19

Average of FO/(I+S) 0.4460 1.8718 2.0610

Consolidity class C U U
The corresponding fuzzy numerical results of the two equa-
tions using generalized fuzzy mathematics are shown in
Table 9. The results of the example indicate variation of the

consolidity index between the different classes.

3.7. Partial fraction of fuzzy polynomials

In this section, the suggested generalized fuzzy mathematics is
applied for solving problems of partial fraction of fuzzy
polynomials.

Consider the following fourth-order expression

fðxÞ ¼ a1x
3 þ a2x

2 þ a3xþ a4

ðx2 þ b1Þ � ðxþ b2Þ2
ð25Þ

such as a1, a2, a3, a4, b1 and b2 are fuzzy variables. The expres-
sion (25) can be represented in the following partial fraction
form:

fðxÞ ¼ Axþ B

x2 þ b1
þ C

xþ b2
þ D

ðxþ b2Þ2
ð26Þ

such as A, B, C and D are also fuzzy variables.

Equating coefficients of (25) and (26), we arrive at the fol-
lowing equations:
ple.

b2 A B C D FO/(I+S)

�2 1 2.5 �4 �2.5
3 �6 �7 2 �3 3.2053

3 �4 �7 �1 �1 3.6980

1 �6 �2 �1 1 1.1068

�1 5 7 2 �7 0.8636

�1 �5 0 �2 7 4.0445

3 �12 �4 �1 �1 3.4636

5 7 4 7 7 3.9823

�4 13 7 5 9 5.6487

3 �12 �4 0 2 2.0984

3.1235eU

ction.

Case 2

x y y0 y00

1 1 �0.5 �0.375
3 5 �3 �11
2 4 �3 �8
1 2 �1 �4
�2 �1 1 7

�2 �6 4 8

4 1 �2 �14
�3 7 �3 9

2 �7 3 6

3 6 �4 �11

Average of FO/(I+S) 1.1375 4.5032

Consolidity class M U



Table 11 Consolidity results of Vandermonde determinant.

Aspect x1 x2 x3 x4 detV FO/(I+S)

Value 1 2 3 4 12 1.2222

Fuzzy levels 5 6 3 1 �3 3.3611

4 3 2 2 7 1.0614

3 3 2 1 2 4.8333

2 1 6 �1 �3 2.5972

�4 �1 1 �2 �5 4.9500

�3 �5 �3 �2 �6 1.2222

�1 �3 �7 2 9 3.3611

1 2 4 1 10 4.9762

2 3 3 1 5 2.7065

Average value of FO/(I+S) 3.2095

Overall consolidity class U
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x3 : a1 ¼ Aþ C

x2 : a2 ¼ Bþ 2b2Aþ b2CþD

x1 : a3 ¼ b22Aþ 2b2Bþ b1C

x0 : a4 ¼ b22Bþ b1b2Cþ b1D

ð27Þ

Eq. (27) can be solved numerically by the Gaussian–Jordan

elimination method. The results of the selected example
using generalized fuzzy mathematics for different input fuzzy
scenarios are shown in Table 10. The results indicate that
the partial fraction example is of the Quasi-Consolidated

type. Similar treatment of the know-how for implementing
the consolidity theory can be extended to wide classes of
examples of algebra, geometry, trigonometry, topology,

mechanics, etc.

4. System consolidity of fuzzy matrices

4.1. Determinant of fuzzy matrices

In this section, the system consolidity theory implementation
know-how is shown for some selected fuzzy mathematical
operations [13,14].

Consider the general form matrix A 2 Rn·n expressed as:

A ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. . .

. ..
.

an1 an2 ann

266664
377775 ð28Þ

The determinant of A can be written as

detA ¼
Xn
j¼1
ð�1Þiþjaijmij ð29Þ

such as (�1)i+jmij is the ij the cofactor of aij. For the corre-
sponding fuzzy value applying the suggested fuzzy algebra,
we have

‘fdetAg ¼
Xn
j¼1
ð�1Þiþj½‘ðaijÞ þ ‘ðmijÞ� ð30Þ

Numerical example: Determinant of Vandermonde fuzzy
matrix.

We will consider the calculation of matrices with fuzzy ele-

ment. As an example, let us introduce the Vandermonde fuzzy
determinant defined as:

detV ¼ det

1 1 � � � 1

x1 x2 � � � xn

x2
1 x2

2 � � � x2
n

..

. ..
.

� � � ..
.

xn�1
1 xn�1

2 � � � xn�1
n

266666664

377777775 ¼ P16i<j6nðxi � xjÞ

ð31Þ

such that x1, x2, . . . , xn are fuzzy parameters. The problem is

first solved using the Gaussian–Jordan Elimination technique
using the generalized fuzzy mathematics applied to the original
matrix. The results are then verified with the answer of the
right hand side of (31).
The numerical example is selected for the case of n = 4. For
this example, the results using the generalized fuzzy
mathematics are given in Table 11. Alternatively, using the

right hand side of (29), we have

detV ¼ ðx10 � x20Þ � ðx10 � x30Þ � ðx10 � x40Þ � ðx20 � x30Þ
� ðx20 � x40Þ � ðx30 � x40Þ ð32Þ

and

‘fdetVg ¼
X

16i<j6n

xi0‘xi � xj0‘j

xi0 � xj0

ð33Þ

The results demonstrate that the determinant of the fuzzy

Vandermonde matrix is of the unconsolidated type with con-
siderable high average value of the consolidity index.
4.2. Eigenvalues of fuzzy matrices

Consider the linear system _x ¼ Ax with

A ¼
a b

c d

� 	
2 R2�2 ð34Þ

such as a, b, c and d are fuzzy parameters.

The characteristic polynomial of matrix A is given by:

PAðkÞ ¼ k2 � ðaþ dÞkþ ðad� bcÞ ð35Þ

The eigenvalues of A can be expressed as:

k1 ¼
aþ d

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ dÞ2 � 4ðad� bcÞ

q
2

ð36Þ

and

k2 ¼
aþ d

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ dÞ2 � 4ðad� bcÞ

q
2

ð37Þ

The parameters k1 and k2 are also fuzzy variables. This prob-
lem is demonstrated by a numerical example as shown in
Table 12 for two cases of real and complex eigenvalues, solved

using the generalized fuzzy mathematics. The results indicate
that the consolidity of the eigenvalues of the example are of
the mixed type combing both consolidated and unconsolidated
values.



Table 12 Consolidity results selected eigenvalues of fuzzy matrices problem.

Aspect a b c d k1 k2
Value 3 2 1 2 4 1

Case 1: Real fuzzy eigenvalues

Fuzzy levels 4 2 4 3 6 �6
3 2 3 3 5 �4
2 1 2 1 3 �4
5 �2 5 4 5 2

1 1 �1 3 1 6

1 6 �6 4 1 8

�5 �3 3 1 �4 2

3 2 5 4 6 �6

Average calculated value of FO/(I+S) 1.4901 2.2556

Overall consolidity class M M

Aspect a b c d Re(k1) Im(k1) Re(k2) Im(k2)
Value 3 �2 1 2 2.5 1.3228 2.5 �1.3228
Case 2: Complex fuzzy eigenvalues

Fuzzy levels 4 2 4 3 4 7 4 7

3 2 3 3 3 6 3 6

2 1 2 1 2 3 2 3

5 �2 5 4 5 2 5 2

1 1 �1 3 2 1 2 1

1 6 �6 4 2 2 2 2

�5 �3 3 1 �3 6 �3 6

3 2 5 4 3 10 3 10

Average calculated value of FO/(I+S) 1.1056 1.9531 1.1056 1.9531

Overall consolidity class M M M M

Table 13 Consolidity results of a selected least-square fuzzy linear equations problem.

Parameter a11 a12 a21 a22 a31 a32 b1 b2 b3 x1 x2
Value 1 2 2 �1 �1 2 1 2 3 0.6 0.8

Fuzzy levels 3 6 3 5 5 4 5 4 5 �5 5

4 3 3 5 5 �3 3 4 4 7 1

2 3 3 3 3 4 2 2 4 �6 3

1 2 2 1 1 2 2 1 2 4 1

1 2 �1 �2 �2 �1 �1 �3 �2 �8 �1
�1 �2 �3 3 3 1 1 2 �2 �2 �6
�3 �2 �1 1 1 �2 7 5 3 2 �1
1 5 3 1 2 4 1 4 2 �3 �6
3 3 4 4 5 5 3 4 5 �7 �4

Average calculated value of FO/(I+S) 2.1943 1.1433

Overall consolidity class U M
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4.3. Solving least-square fuzzy linear equations

Consider the inconsistent fuzzy linear system Ax = b, where

A ¼
a11 a12

a21 a22

a31 a32

264
375; b ¼

b1

b2

b3

264
375 ð38Þ

where all parameters are fuzzy variables.
The solution of (38) is normally expressed in the form of the

least square equation:

x0 ¼ ðAT � AÞ�1ATb ¼ A	b ð39Þ
where (Æ)T indicates the transpose of (Æ) and A	 designates the
pseudo or generalized inverse of the matrix A.

Eq. (39) is solved for a selected numerical example as
shown in Table 13 with different input fuzzy levels

scenarios. The results of the consolidity analysis indicate
that the consolidity indices of both x1 and x2 are of the
mixed type (combined consolidated and unconsolidated

forms).
Such mathematical treatment can be also extended for the

implementation of systems consolidity theory for inversions

of fuzzy matrices, derivatives of matrices, fuzzy Jacobian
matrices and functions of fuzzy matrices.



Table 14 Consolidity results of the nonlinear fuzzy optimi-

zation example.

Parameter a b c d x y z G FO/(I+S)

Value 1 4 16 1
ffiffiffi
2
p

1=
ffiffiffi
2
p

0 4

(i) First solution

Fuzzy levels 3 4 1 3 1 2 0 7 3.7632

�1 3 �3 5 3 3 0 6 2.6625

�1 3 5 7 4 4 0 8 1.7959

4 3 5 7 2 5 0 11 2.2427

2 2 4 5 2 3 0 7 1.9494

4 3 4 3 2 1 0 7 0.8049

�3 2 �3 3 2 �2 0 �5 2.8171

5 1 �5 6 �4 �3 0 �3 0.8571

Average calculated value of FO/(I+S) 1.90123

Overall consolidity class M

1 4 16 1 �
ffiffiffi
2
p

�1=
ffiffiffi
2
p

0 4

(ii) Second solution

Fuzzy levels 3 4 1 3 1 2 0 7 3.7632

�1 3 �3 5 3 3 0 6 2.6625

�1 3 5 7 4 4 0 8 1.7959

4 3 5 7 2 5 0 11 2.2427

2 2 4 5 2 3 0 7 1.9494

4 3 4 3 2 1 0 7 0.8049

�3 2 �3 3 2 �2 0 �5 2.8171

5 1 �5 6 �4 �3 0 �3 0.8571

Average calculated value of FO/(I+S) 1.90123

Overall consolidity class M
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5. System consolidity of fuzzy optimization

The developed approach is now elaborated for the mathemat-
ical programming problems by simply using spreadsheet repre-

sentation with Visual Basic Applications (VBA) programming.
However, the approach is general and can be applied to other
unlimited forms of representations and other known program-

ming software such as Matlab.
In this section, the system consolidity theory is applied to a

fuzzy nonlinear constrained optimization problem described as
follows [15–17].

Solve the nonlinear optimization problem Minimize
G= ax2 + by2 + cz2 subject to x Æ y = d where a, b, c and d
are fuzzy variables.

Define the Lagrangean function of the problem as:

L ¼ ax2 þ by2 þ cz2 þ kðxy� dÞ ð40Þ

and the Kuhn–Tucker conditions are

ðiÞ @L

@x
¼ 2axþ ky ¼ 0 ð41Þ

ðiiÞ @L

@y
¼ 2byþ kx ¼ 0 ð42Þ

ðiiiÞ @L

@z
¼ 2cz ¼ 0 ð43Þ

Multiplying (i) and (ii) by x and y respectively and using
xy = d, gives
Table 15 Examples of standard fuzzy probability density functions analysis at their original set-points.

Ser. Name Fuzzy probability density function Fuzzy mean (l0, ‘l) Fuzzy variance (V0, ‘V)

1 Beta Px ¼ 1
Bða;bÞ x

a�1 � ð1� xÞb�1

Bða; bÞ ¼ CðaÞ�CðbÞ
CðaþbÞ

0 < x < 1

l0 ¼ a0
a0þb0

‘l ¼ ‘a � ‘aþb

V0 ¼ a0b0

ða0þb0Þ2�ða0þb0þ1Þ
‘v ¼ ‘a þ ‘b � 2‘aþb � ‘aþbþ1

2 Binomial (discrete type)
fðx; n; pÞ ¼ PðX ¼ xÞ
¼ n

x


 �
� pxð1� pÞn�x

x ¼ 0; 1; 2; . . . n

l0 ¼ n � p0
‘l ¼ ‘p

V0 ¼ n � p0 � ð1� p0Þ
‘V ¼ ‘p � ‘p � p0=ð1� p0Þ

3 Erlang
Px ¼ krxr�1e�kx

ðr�1Þ!
0 < x; r ¼ 1; 2; . . .

l0 ¼ r0=k0
‘l ¼ ‘r � ‘k

V0 ¼ r0=k
2
0

‘v ¼ ‘r � 2‘k

4 Exponential
Px ¼ ke�kx

0 6 x
0 < k

l0 ¼ 1
k0

‘l ¼ �‘k
V0 ¼ 1

k20
‘v ¼ �2‘k

5 Gamma
Px ¼ kxr�1e�kx

CðxÞ
0 < x; 0 < r; 0 < k

l0 ¼ r0=k0
‘l ¼ ‘r � ‘k

V0 ¼ r0=k
2
0

‘v ¼ ‘r � 2‘k

6 Geometric
ð1� pÞx�1p;
x ¼ 1; 2; . . . ; 0 6 p < 1

l0 ¼ 1=p0
‘l ¼ �‘p

V0 ¼ ð1� p0Þ=p20
‘v ¼ �p0 � ‘p=ð1� p0Þ � 2 � ‘p

7 Lognormal Px ¼ 1
xr
ffiffiffiffi
2p
p exp �½‘nðxÞ�h�2

2:x2

� �
l0 ¼ eh0þx2

0
=2

‘l ¼ ‘h � h0 þ ‘x � x2
0

V0 ¼ e2h0þx2
0

e
x2
0�1

� �
‘v ¼ 2‘h � h0 þ 2‘x � x2

0

8 Negative binomial (discrete)
Px ¼

x� 1
r� 1


 �
ð1� pÞx�rpr

x ¼ r; rþ 1; rþ 2; . . . ; 0 6 p 6 1

l0 ¼ r0=p0
‘l ¼ ‘r � ‘p

V0 ¼ r0ð1� p0Þ=p20
‘v ¼ ‘r � p0:‘p=ð1� p0Þ � 2:‘p

9 Normal Px ¼ 1
r
ffiffiffiffi
2p
p e�1=2

x�m
rð Þ

2 l0 ¼ m0

‘l ¼ ‘m
V0 ¼ r2

0

‘v ¼ 2‘r

10 Poisson (discrete type)
fðx; kÞ ¼ PðX ¼ xÞ ¼ e�k � kxx!
x ¼ 0; 1; 2; . . . ; 0 < k

l0 ¼ k0
‘l ¼ ‘k

V0 ¼ k0
‘V ¼ ‘k

11 Uniform
Px ¼ 1

b�a
a 6 x 6 b
a < b

l0 ¼
ðb0þa0Þ

2

‘l ¼ ‘b �b0þ‘a �a0
ðb0þa0Þ

V0 ¼ ðb0�a0Þ
2

12

‘v ¼ 2ð‘b � b0 � ‘a � a0Þ=ðb0 � a0Þ
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2ax2 ¼ �kd ¼ 2by2 ¼ 2bd2

x2
ð44Þ

x4 ¼ bd2

a
thus x ¼ bd2

a


 �1=4

and y ¼ d

x
ð45Þ

The results for the numeric example are shown in Table 14

for different scenarios of input fuzzy levels. From this table the
results of the consolidity analysis of the nonlinear optimization
problem reveal that the objective function G for both solutions
is of the mixed type, containing both consolidated and uncon-

solidated index values.
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6. System consolidity of fuzzy probability and statistics

6.1. Fuzzy probability functions

Most important applications in real life are dealing with fuzzy
data. These data will lead to generating corresponding
probability density functions with fuzzy coefficients. Some

examples of these functions are given in Table 15 with corre-
sponding fuzzy level of their means and variances [18–20].
The compact form of the derivation of the fuzzy means and

variances will directly lead to having analogous compact form
of their consolidity indices. Such compact form realization of
the consolidity indices will represent another impetus for fos-

tering the new theory in handling fuzzy probability and statis-
tics problems.

Similar analysis can be generalized for multivariate proba-
bility density, distribution and conditional functions of various

continuous or discrete types.
As a demonstration of an example of the fuzzy probabil-

ity density, let us consider the normal distribution function

with l0 = 1 and r = 3, and different scenarios of fuzzy
levels. The fuzzy level of the normal probability density
function can be expressed using the generalized fuzzy theory

as
Table 16 Scenarios of effect of input parameters fuzziness on

the values of the normal probability density function (l0 = 1

and r0 = 3).

x Px ¼
1

r
ffiffiffiffiffiffi
2p
p e�1=2ð

x�l
r Þ

2

Fuzzy levels of different scenarios

Value (‘l = 2,

‘r = 1)

(‘l = �2,
‘r = 1)

(‘l = 3,

‘r = �1)
(‘l = 1,

‘r = �1)
�8 0.0015 3 4 �4 �4
�4 0.0332 2 3 �3 �3
�3 0.0547 1 2 �3 �2
�2 0.0807 1 2 �2 �1
�1 0.1065 1 1 �2 �1
0 0.1258 1 1 �1 �1
1 0.1329 1 1 �1 �1
2 0.1258 1 1 �1 �1
3 0.1065 1 1 �1 �1
4 0.0807 2 1 �1 �1
5 0.0547 2 1 �1 �1
6 0.0332 3 2 �1 �2
10 0.0015 4 3 �2 �3
‘fpxÞ¼ ‘
1

r
ffiffiffiffiffiffi
2p
p e�1=2�

x�l
rð Þ2


 �
¼ ‘r � 1þ0:5 � x�l0

r0


 �2

þ0:5 �l0 � ‘l
r0

� x�l0

r0


 �" #
ð46Þ

The distribution of the effect of input parameters fuzziness
on the values of the probability density function is shown in
Table 16. It could appear from the table, that the impact of

input parameters fuzziness has different effect at different
points of the probability density curve.

To get more insight to the fuzzy probability density curve,

we will plot the results of Table 16 as shown in Fig. 5 using the
visual fuzzy logic-based representation and the color codes
given in Table 17 [21–24]. Such colors are based on the logical

sequence of these colors in the Hue or wavelength circle
describing the colors spectrum. The concept is an extension
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Figure 5 Sketches of effect of input parameters fuzziness on the

values of the normal probability density function (l0 = 1, r0 = 3).



Table 17 Definition of positive and negative colors sample scale for visual representations [22–24].

Consolidity analysis for fully fuzzy functions, matrices, probability and statistics 193
of the well-known fuzziness similarity with gray scale to more
general color scales.

The plots show that the normal probability density function

is divided into several zones of different fuzzy levels that are
symmetrical around the mean.

For the sake of consolidity analysis of the normal probabil-

ity density functions of fuzzy parameters m and r of Table 15,
we can see that for the mean we have ‘l/‘m = 1 (Neutrally
consolidated Index), and for the variance V ¼ r2

0 we have

‘v/‘r = 2, which represents an unconsolidated variable.

6.2. Fuzzy statistical functions

In this section, the generalized fuzzy mathematics is applied for

solving fuzzy statistical functions. Let xi, i = 1, 2, . . . , n, be a
fuzzy sequence, then for the fuzzy mean of the sequence, we
have

l0 ¼
1

n

Xn
i¼1

xi0 ð47Þ

and

‘l ¼
Pn

i¼1‘xi0 � xi0Pn
i¼1xi0

ð48Þ

The corresponding variance is given by

V0 ¼
1

n

Xn
i¼1

x2
i0

ð49Þ

and

‘v ¼
Pn

i¼12 � ‘xi0 � x
2
i0Pn

i¼1xi0

ð50Þ

Consolidity tests were carried out for the mean and variance
of the four selected probability density functions of the Uni-
form, Lognormal, Gamma and Beta and the results are shown
in Table 18. Once more in the implementation procedure, the
exact values of fuzzy levels are preserved all over the calcula-
tions and are rounded to integer values only at the final results.

The results indicate that the consolidity indices of themean l
and the variance V of the selected probability density functions
are of different types belonging to different consolidity zones.

Such mathematical treatment can also be extended for the

implementation of system consolidity theory to other fuzzy
statistical functions such as correlation and covariance matri-
ces, moments of fuzzy random variables, multivariable fuzzy

statistics, and entropy of fuzzy random variables.
7. Building Matlab Toolbox library for system consolidity

calculations

It follows from the above analysis that the presented fuzzy
know-how could be an excellent tool to determine the propaga-
tion of fuzziness for various functions and matrices in fully

fuzzy environment. It also could appear from the study how
the corresponding fuzzy levels of various standard functions
can be calculated systematically in a compact form. This will

give the real need for building a fuzzy functions library to calcu-
late within the course of calculations corresponding fuzzy levels.

Thus the research work could be directed toward transfer-

ring all basic fuzzy operations, fuzzy functions and matrices
operations, as well as fuzzy statistical operations as built-in
function in special computational Toolbox in Matlab or to

be created as special functions inside other software languages.
The building of such library will strengthen the capability of
the generalized fuzzy mathematics approach to effectively han-
dle fuzzy problems expressed and manipulated in matrix form

regardless of their dimensionalities and types of operation; also
for handling fuzzy data expressed by fuzzy probabilistic or
statistical functions. Example of tentative work toward build-

ing such Matlab Library for helping in performing system con-
solidity analysis is shown in Table 19.

Similar approaches can also be devised for building

libraries to cover other problems such as fuzzy multivariate



Table 18 Consolidity results of the fuzzy mean and variance of some selected probability density functions.

Aspect a b l V FO/(I+S)

Value 1 7 4 3 l V

(i) Fuzzy uniform probability density function

Fuzzy levels 1 2 4 3 2.0000 2.3111

2 1 2 4 2.0000 1.4815

3 2 4 2 2.0000 1.7255

�3 2 3 4 2.0000 4.1212

2 �2 �3 �5 2.0000 3.5555

�4 �3 �6 �6 2.0000 1.8133

5 2 5 3 2.0000 1.2632

4 8 15 17 2.0000 2.3111

7 3 7 5 2.0000 1.3333

1 6 11 14 2.0000 2.5426

Average value of FO/(I+S) 2.0000 2.2458

Overall consolidity class U U

h w l V FO/(I+S)

1 .5 3.0802 7.9328 l V

(ii) Fuzzy lognormal probability density function

Fuzzy levels 1 2 1 3 0.4870 2.2501

2 1 1 5 0.4870 2.6999

3 2 1 7 0.4870 2.6250

�3 2 �1 �5 0.4870 3.7501

2 �2 0 3 0.4870 4.4998

�4 �3 �2 �10 0.4870 2.5909

5 2 2 11 0.4870 2.7500

4 8 3 12 0.4870 2.2500

7 3 3 16 0.4870 2.7353

1 6 1 5 0.4870 1.8750

Average value of FO/(I+S) 0.4870 2.8026

Overall consolidity class C U

r k l V FO/(I+S)

1 0.5 2 4 l V

(iii) Fuzzy gamma probability density function

Fuzzy levels 1 2 2 �3 1.5000 2.2501

2 1 1 0 0.6000 0.0000

3 2 1 �1 0.3750 0.3750

�3 2 �5 �7 3.7501 5.2501

2 �2 4 6 5.9997 8.9996

�4 �3 �1 2 0.2727 0.5454

5 2 2 3 0.7500 0.7500

4 8 3 1 0.7500 0.2500

7 3 �4 �12 0.7059 2.2500

1 6 �5 �11 1.8750 0.1765

Average value of FO/(I+S) 1.6578 2.4222

Overall consolidity class M M

a b l V FO/(I+S)

1 0.5 0.6667 0.0889 l V

(iv) Fuzzy beta density function

Fuzzy levels 1 2 1 �4 0.7500 2.7501

2 1 1 �5 0.6000 3.1999

3 2 2 �8 0.6250 3.1251

�3 2 0 �6 0.2500 4.2501

2 �2 0 3 0.0000 4.9997

�4 �3 �2 11 0.6363 3.0909

5 2 2 13 0.5833 3.2500

4 8 4 �15 0.7500 2.7502

7 3 3 �18 0.5882 3.2353

Average value of FO/(I+S) 0.4783 3.0651

Overall consolidity class C U
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Table 19 Some selected symbolic-based toolbox examples of the fuzzy functions calculations library at the original set-point x0.

Ser. Original function Calculated symbolic-based fuzzy level Proposed toolbox function of fuzzy level

1 y = sinx ‘y = ‘x Æ x0 Æ cosx0/sinx0 ‘y = F sin(x0, ‘x)

2 y = cosx ‘y = �‘x Æ x0 Æ sinx0/cosx0 ‘y = Fcos(x0, ‘x)

3 y = tanx ‘y = ‘x Æ x0 Æ cosx0/sinx0 � ‘x Æ x0 Æ sinx0/cosx0 ‘y = F tan(x0, ‘x)

4 y = sinhx ‘y = ‘x Æ x0 Æ coshx0/sinhx0 ‘y = F sinh(x0, ‘x)

5 y = coshx ‘y = ‘x Æ x0 Æ sinhx0/coshx0 ‘y = Fcosh(x0, ‘x)

6 y = tanhx ‘y = ‘x Æ x0 Æ cosx0/sinx0 + ‘x Æ x0 Æ sinhx0/coshx0 ‘y = F tanh(x0, ‘x)

7 y = tanh�1x ‘y ¼ ‘x � x0 � 1� x20
� ��1

=tanh�1x0 ‘y = Fa tanh(x0, ‘x)

8 y = ex ‘y = ‘x Æ x0 ‘y = Fexp(x0, ‘x)

9 y = lnx ‘y = ‘x/lnx0 ‘y = F ln(x0, ‘x)

10 y = etan x ‘y = ‘x Æ x0 Æ (1 + tan2x0) ‘y = Fe tan(x0, ‘x)

11 y = ex sinx ‘y = ‘x Æ x0 Æ (1 + cosx0/sinx0) ‘y = F exp(x0, ‘x) Æ Fsin (x0, ‘x)

Table 20 Some suggested areas of applications of the consolidity theory [1–3,30].

Basic sciences Evolutionary

systems

Engineering Biology and

medicine

Economics and

finance

Political and

management

sciences

Social sciences

and humanitiesa

Mathematics Evolution theory Control and robotics Genetics Financial systems Political theory Social science

Physics Evolutionary models Industrial systems Bio-statistics Econometrics Behavior science Literature

Chemistry Global modeling Aeronautics and space Bioinformatics Business Management models Communication

studies

Biology Global optimization Chemical processes Medicine Commerce Operations research Psychology

Astronomy Nuclear engineering Biomedical

engineering

Accounting Organizations Philosophy

Geology Aerospace engineering Pharmacology Marketing Development studies Education

Material engineering Ecology Operation

management

Law

a The treatment in each discipline could be carried out either in numeric or linguistic type based on the considered nature of system’s

representation.
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regression analysis, fuzzy Fourier Transform, and spectra
analysis of fuzzy random variables of different dimensionali-

ties. This will open the door in the future toward the solving
of many previously forbidden classes of real life problems in
fully fuzzy environments.

As an example of using the above special fuzzy function, let
us introduce y such as

y ¼ e�ax � sin bx � ln cx= sec dx ð51Þ

Then, the fuzzy level of y using the above fuzzy functions

library can be expressed as:

‘y ¼ F expð�a � x0; ‘xÞ þ F sinðb � x0; ‘xÞ þ F lnðc � x0; ‘xÞ
� F cosðd � x0; ‘xÞ ð52Þ

For the function of (52), the consolidity index can easily

be expressed as Œ‘y/‘xŒ which will follow directly from
substitution.

All basic fuzzy operations, fuzzy functions and matrices

operations, as well as fuzzy statistical operations can be built
as a special library of the computational Matlab Toolboxor can
be created as special functions in other software languages [25].

8. Discussions of the applications of system consolidity

With the presentation in a systematic way of the fuzzy

know-how in this paper, the road is now paved to start
examining the system consolidity of existing natural and
man-made systems. Moreover, such fuzzy know-how will be

indispensable for checking (and double checking) open spec-
trum of future applications during their modeling, analysis
and design stages [26–29].

The applications of the consolidity theory cover almost
facets of existing sciences. A brief account of these applications
is provided in Table 20 [1–3,30]. In general, consolidity is an

internal property of systems that enables giving an in-depth look
inside such systems, regardless of their field of applications.
Such property will lead to giving a new forum for better under-
standing of various sciences. With the developed know-how for

consolidity calculations, new classes of advanced systems with
strong consolidity will be born and will be taken for granted
as the future standard of systems in various disciplines.

Using the presented know-how for the calculations of sys-
tem consolidity, researchers, designers and developers are
now in excellent position to start building new generation of

systems with strong consolidity standards. In the same time,
they should start searching within the existing natural and
man-made systems for ways to keep them always in good con-
solidated states. Though these missions look very challenging,

yet the consolidity theory know-how presented in this paper
could help in crossing quickly a substantial span of such
challenge.

For the implementation of consolidity theory to existing
man-made systems, the situation could be possible by altering
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parameters of the system within the utmost extend permitted
for changes. As for natural systems, the system consolidity
improvement matter could also be possible by interfering

within the system parameters together with environment and
trying to direct the physical process toward better targeted
consolidity. Moreover, for the implementation of the consolid-

ity approach for man-made systems, it is possible that various
prototypes can be designed fulfilling almost the same degree of
functionality. These systems can be ranked starting from the

best consolidated one with the lowest consolidity index score
(the superior consolidated prototype).

9. Conclusions

The paper presented a comprehensive analysis of the necessary
know-how for developing the system consolidity theory for

various basic fuzzy mathematical problems. The problem of
formulating system consolidity theory was extended in this
paper to cover general classes of fuzzy mathematical func-
tions, matrices and statistics. It is shown that the system con-

solidity index can be expressed in compact forms for most
standard functions such as trigonometric, hyperbolic and
exponential functions. Moreover, the consolidity approach

is highly applicable to fuzzy problems expressed and manipu-
lated in matrix form regardless of their dimensionalities and
types of operation or to fuzzy data expressed by fuzzy prob-

abilistic or statistical functions. The technique can also be
applied smoothly to cover most of the basic fuzzy probabilis-
tic and statistics functions and operations. Extension of the
consolidity theory know-how was also elucidated for handling

fuzzy optimization problems of the linear and nonlinear
types.

The results of the system consolidity theory give rise to build-

ing a comprehensive library for calculating the corresponding
propagated fuzziness for these functions. Therefore, the gener-
alized fuzzy mathematics can be easily embedded with the con-

ventional mathematics through incorporating such fuzzy
functions library as a special computational Matlab Toolbox,
or through creating special fuzzy-based functions in other

software packages. These cover building a comprehensive
fuzzy-based library to accommodate all fuzzy functions, matri-
ces and statistical operations. In all cases, the proposed fuzzy
know-how follows the conventional mathematics and statistics

and can be extended easels to many other branches. Extension
is possible to other mathematical categories of algebra, geome-
try and topology, calculus, dynamics, mechanics, etc. System

consolidity index can be also implemented in a linguistic rather
than numeric type for descriptive systems that are not express-
ible in mathematical forms.

The presentation of the know-how in this paper will open
the door toward future solving many previously forbidden
classes of real life system consolidity problems in fully fuzzy
environments. Examples of some disciplines that could benefit

from the presented know-how are the fields of basic sciences,
evolutionary systems, engineering, astronomy, life sciences,
environmental sciences, ecology, biology, medicine, econom-

ics, finance, political and management sciences, social science,
communication studies, humanities, and education. Methodo-
logical development and field experimentation of this new sys-

tem consolidity theory are thus recommended for solving
many applications in these disciplines including all the cycles
of modeling, analysis, optimization and design in fully fuzzy
environment.

In conclusion, it is speculated that with the wide use of the

proposed know-how, the implementation of the system conso-
lidity theory will uncover many unanswered postponed intrigu-
ing questions about the malfunction and collapse of some of

our existing systems due to their inferior consolidity. On the
other hand, researchers and developers with the right know-
how tools in their hands should seek building a new generation

of superior systems to be designed on the basis of excellent
functionality and strong consolidity.
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